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HONTE CARLO SI!IULATIONS OF FERIIION SYS’TEI’IS:
THE DETERMINANT Hl?THOD

J. E. Gubernatis
Theoretical Division

Los Alamos National Laboratory
Los Alamos, NH 87545

Described are the details for performing llonteCarlo simulations on systems of
fermions at finite temperatures by use of a technique called the Determinant
Hethod. This ❑ethod is based on a functional integral formulation of the
fermion problem !Blankenbecler et al., Phys. Rev. D 24, 2278 (1981)] in which
the quartic fermion-fermion interactions that exist for certain ❑odels are
transformed into bilinear ones by the introduction [J. Hirsch, Phys. Rev, B ~,
4059 (1983)] of Ising-like variables and an additional finite dimension. It is
on the transformed problem the Monte Carlo simulations are performed, A brief
summary of research on two suclimodel problems, the spinless fermion lcttice
gas and the Anderson impurity problem, is also given.



,

HOWE CARLO SIPfllIaATIONSOF FERFIION SYSTIWS:
THE DETEIUIINANT HETNOD

IW’RODUCTION

In the p~st several years ●n upswell in interest and activity in performing
IlohteCarlo simulations of systems obeying the laws of quantum ~chanics has
occurred. Causing this upuwell is both the development of algorithms for per-
forming the simulations ●nd the availability of computers big and faut enough
to make the use of much algorithms practical. Indeed for some problems the
use of a CRAY-like computer is essential.

In contrast to classical statistical mechanics, where the phase “Monte Carlo
simulations” refers still to the method developed by Metropolis et al., in
quantum statistical ❑echanics there are several quite distinct Ilonte Carlo
❑ethods. There is a variational ❑ethod, Green’s function method, path-integral
method, determinant ❑ethod, ●tc. Although each ❑ethod has the importance
samplinE concept ●xpressed by Metropolis et al. at its core, their details, arid
the basis for their details, are often distinct. For example, the methods
work either at z~ro t~mperature or finite temp~rature, but not bcth. Often
they work well for bosons but require supplementary procedures to work for fer-
❑ions. The subject of this paper, the detenninart method,2’3 works for fer-
mions at finite temperatures, although it is rooted in an approach that allows
the sim~lations of fermions, bosons and their interactions.

Uur description of the determinant method will develop in several stages.
First, we will present a broad view of its major parts. Emphdsis will be on
the introduction of additional degrees of freedom to transform the original
quantum calculation into a calculati~n involving classical degrees of freedom.
Thea details to the ❑ajor parts will be added, Following this, sev?ral points
useful fcr its implementation are discussed. Next an illustration is given
of how various thermodynamic and correlation functions are calculated. Then,
in conclusion, we present a very brief description of the results of simulating
the properties of the spinless fermion lattice gas’ and Anderson impurity
models

BASIC lDEA

What one wants to evaluate are thermodynamic averages of differel~t physical
quantities. Such an average for a typical quantity A is defined by

Tr e-pH<A> = .——
z

(1)

where the partition function Z is

z =Tre
- 13H

(2)



The problew is in general the inability not only to exponentiste the quantum
hamiltonian but ●lso to perform the required trace. To mitigate these prob-
lems, we make an ●pproximatiGii that introduces ●dditional degrees of freedom
and an ●xtra (finite) dimension i~to the problem. The ●pproximation is con-
trolled in the sense that the ●rror in principle can be made ●s small as we
like, For eJciIconfiguration of these new variables the ●pproximation
corresponds to replacing the original hamiltonitin by an effective one for which
we-can perform the trace over the original (i.e. the fermion) degrees of
freedom. Symbolically, we have

Tro TrAe
-E!h[a]

<A> -

TruTre
-flh[u]

Trflz[a][z[u]-lTrAe -Ph[ul ]

= ———._
Truz[cf]

TrO A(a)z[o]

‘ Troz[~

where u represents a configuration of Lhe new degrees of freedom and

Z[o; = Tre
-~h[u]

(3)

(4)

(5)

(6)

is the partition function of lhe configuration-dependent effective hamiltonian.
It is the average represented by (5) that is done by the tlonteCarlo methg~s;
however, instead of
we now must use 2[0

are ●mbodied,

using the standard statistical probabili~y density e-p”/z
/z. t itiin Z[U] ~here the quantum mechanical details

SOME DETAILS

THE TROTTER /’approximation

To add details of the method, we fouus on the partition function. The first
step is to iutroduce a small parameter T into the problem. Because the
hamiltonian always consnuteswith itself, we can wrfl.te

z= Tr e-pn

=Tre
-IH /TH /rH... (7)
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with T = P/L where L is the n~er of ●-TH factors is the argument of the
tra:e. We now ●pproximate e- . To do this we note that

whbr~ H is the non-interacting part of the hamiltonian, which is quadratic in
r!?”the fe Ion degrees of freedom, and H is the interacting part, which for the

models we conmider ia quartic in the ~emionde~rees of freedom. Since HO and
HI do not co~ute we use the Trotter approximation to write

Hence we in principle can make this a very good approximation by ❑aking T
sm.911. Having done this, we have a piece CXp(-THo) which generally is
easily ●valuated, but are still faced wiLh expunentiating HI. This step is
accomplished for certain models by using a form of the HubDard-Stratanovich
transformation.6

THE HUBBARD-STRATANOVICH TRANSFORMATION

This transformation is best illustrated by an example, For our example we
choose the Hubbard hamiltonian

H = -t I (c~scjs + c~scis) + UInitni$
<ij>s i

[8)

<“j> to a nearest neighbor pair of sites, swhere i refers to u lattice site, ~
t$ a up or down spin, where n. = c. c, is the fermion number operator, and

and c, are fermion cteat!~n an~sd~~truction operators, For this
;&#iltoniA!

HI = U 1 nitniJ
i

The transformstiun uses th~ following identity3

-~Un n
i? i$ 1

-~Jui(A)(ni t-ni$) ‘-TIJ/2(niT+ni4)
● =—

21
e

Ui(f!)=il

(9)

with couh ~J = e
Iu/2

whi~.ilis applied to egch site in (9) and to each factor

in (7). If the site: are arranged in a two-dimensional lattice, at eacn site



we have ●n Iaing sp.n at L sites in a third di.menaion. From nore iomal
approaches to the problem this third d~nsion co~~esponds to ●n imaginary t~
sxis obtained by the change of variable it = (M’) . Additionally fnctorm in
(7) then corresponds to a different time steps of the problem. For cm-niencf:
in the following we will use this “time” terminology.

Fr~ (10) we see that the term in (8) quartic in the creation and destruction
operators has been replaced by one that is quadratic: The orginal H in the Qth
factor of (7) has been replaced by an H(2) that is non-interacting and hence
its ●xponen~ ial form is treatable by standard means. In particular we define

H(E) = 1 c;shs(fl)c.
ijs

JS

We can now rewrite (7) as

z = Ti-oTre
-lH(l)e-W2) -IH(L)

...e

.
ana because of quartic form of H(Q) w-ec~n trace cut the fermion degrees of
freedom to obtain

z = Tru det(I + BIB2. ..BL)

= Tro det(I + B2. ..BLB1)

etc

= Troz.[u]

where

and

Z[cll = det(l + Bg. ..BIBBfl+l]l+l] (11)

is the partition function associated with a given configuration of the Ising-
like variables,



TEE CREEH’S FUHCTION

For ●very time stejj2, the Monte Carlo procedure consists of going from site
to site and deciding whether to accept or reject a spin flip. The decision
is generally based on the Metropolis or heat bath algorithm. However in
contraat to classical statistical mechanics where one examines the ratio

P

e
-fiH[u’],e-PH[u]

we must examine

z[u’]/z[ ‘1

The ●valuation of ZIO] generally involves (L+l)c3 multiplications where N is
the number of degrees of freedom it?the original problem. To reduce the com-
putation time, the following alternatives have been devised: The cyclic pro-
~sterties of the products of the D’s presented in (11) are used so at the JILh

time step

Z[u] = det(J + B2+l ... B2BI. ..BQ)

Then for a ne’~configuration we write the new E!las BRAA. Hence

z#c7 =
det(I + B1+l. ..BLF!BgA2)gA2)

=t(l + B9+1. ..BLBB2).B2)

Defining

-1
,89= (I + BQ+I. ..BI,BB2).B2)

we can reexpress the ratio by

det

When t’he
gefierully I
knobn.

(12)

(13)

I +(8C - I)(Afl- I)] (14)

nteractions are short ranged, Al - I is a s arae matrix ~nd (14 can
9

be evaluated with operations of the order N , N, or 1, provided 8Q is

On the surface Bg requires as many operations to compute as the original
determinant. However there are several useful relations which allows the
operation count to be reduced. The first generates a new g; from the gfl,

whenever the configuration changes. Stnrting with



g~ . (I + B2+1. ..BLBB2A1)211)-1

one can %how

lB~ = gg - (1-g2)(Afl-I)8;● (15)

Because of the sparseness of (Ag-l) the equation can usually be solved for g;
in as few as O(N ) operations.

We also 5ave a procedure to go from or,etime to another more efficiently then
by constructing the appropriate g from (13). It is

(16)

The main point is after having made gl via (13) at the very start of the sim-
ulation we in principle can generate all other gg’s in considerable few opera-
tions via (15) arid (16) tl~an by (13). In practice errors build-up and so to
❑aintain an acceptable level of precision (13) is used, from time to time, to
control these errois.

The functions gg instead of Z[U] are the principal quantities needed and
computed in the simulations. This is some sense is a fortunate circumstance,
for one can show2-4

[gglij= gij(i-l, 2-1)

where gi+ is the following thermodynamic (or equal time) Green’s functions

8ij(~+,9)= <ci(J2)c;(l)>

Here 9 implies Q~ and 2+, QI+& with O < & <<1. Similarly one can show

~n.(Q)> = 1
1

- gli(Q+,g)

2’4 for the unequal time Green’s functionsand al=” find speci{ic expressions
gij(Q,m)in terms of products of the Bg’s.

The
the
and

COMPUTER QUANT~TIES

Green’s function is the principal product of OUI simulation. With it and
use of Wick’s tlieorcm, we are able to computa all relevant thermod~namic
many-body correlation functions. ~~antities computed by this method
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include: the energy, specific heat, magnetic susceptibility, singlet super-
conducting susceptibility, density-density correlation function, the
polarizibility, ●tc. To illustrate the procedure, we will now sketch the
computation of the average energy for the Hubbard hamiltonian.

E = <H>
●

From (8) we see averages like <c+ c. > and <n. n > are needed. Since in (8)
+ + 1S JS Slt ih

i#j, <CiSC. >= - <c. c. > which is just g... To do the other type of
average, we ~~stuseW~~kJ~theorern:a ‘J

<nitni+> = <c+ c. c+ c. >
1? lt 1+ 14

= <c;Tci+><c+ c > + <ci*c:*><ciTc;*>
I.J14

The averages in the first term on the right-hand side are just <nis> = 1 -gs..
Those in the last term are zero! The Hubbard-Stratanovich transformation t~~k
term with explicit interactions between opposite spins and replaced it with one
that produces a$ effective haniltonian block diagonal in s. For purposes of
complting <citci$> etc. there are no correlations between spins so such
z’merages are zero. The spins correlations remain only implicitly: the spins
interact through the Ising spin field which may be regarded as an imaginary-
time dependent, external random field that is summed over all possible
configurations.

RESEARCH SUMMARY

To date, using the determinant method, we have performed quaatum Monte Carlo
simulations on two models: the spinless Fermion lattice gas and the Anderson
impurity problem. Work on the first model was recently completed; work on the
second was recently started.

For a half-filled band the hamiltonian for this model is 3

H=-tz
“~cj + c~ci)‘v z {ni-~)(n,j-~)

<ij> <lj>

An in the Hubba$d m~del c+ and c. are fermion creation and destruction opera-

tors and n . C.C, is thelfermio~ number operatur. In the model, spinless

fermions h~p onlaltwo-dimensional lattice with a nearest neighbor interaction
v, RPA calculations predict that the half-filled system undergoes a density-
wave transition for V > 0, an odd angular momentum pairing transition for small
neoative V, and a condensation transition for more negative values of V. The



lsing limit matches onto the density wave transition for V > 0 and onto the
condensation transition for V < 0. A strong coupling expansion provides the
leading corrections to the Ising limit. The intermediate coupling regime w-s
●xplored by the Monte Carlo simulations and various Green’s functions charac-
terizing the quantum correlations were evaluated. Then, using ficite size
scaling techniques, we determined the density wave and condensation phase
boundaries. At these transitions, measured quantities scaled well with the
usual Ising indices. Unfortunately, the weak coupling regime lies beyond the
reach of our simulations.

A~ERSON 1MPURIT% MODEL

The hamiltonian for this ❑odel iss

H= Z [Eknk~
+ +

+ ‘kf(ckscfs + Cfscks )1
ks

+ Ef(nft + nf+) + Unf?nf$

Here electrons exist in a band described by Ek or an impurity (f-level) state
with energy Ef. The band and impurity interact with energy V , and if two
electrons try to occupy the impurity level they experience a ~~ulomb repulsion
of strength U. This model admits a variety of possible physical phenomena
including local magnetic moment formatien, valelice iiuctuations, Kondo effect,
etc. , and is commonly used to describe the properties of rare earth anti
actinide materials,

The code for this simulation is written and tested for several very simple
cases. We are presently using the code to see how ❑uch of the Bethe-ansatz
solutiong to the Anderson impurity ❑odel can be reproduced. In this solution
Ek is assumed to vary linearly with k. We have no results yet.

CONCLUDING REMARKS

We have presented an introductory description of the determinant method wiLh
several important details for its practical implimentation. For ❑ ore details
the Blankenbecker et al.,2 the Hirsch, 3 and the appendix of the Gubernatis
et al.’ papers should be consulted. The latter also gives ❑any detailed
results for the spinless Fermion lattice gas and useful ways to interpret the
data. Similar details for the Hubbard ❑odel are given in reference 3.
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